

WhatsApp/ Tel: +1-929-672-1814 Email: info@genai-training.com www.genai-training.com

Course Overview

This course introduces students to the fundamentals of Machine Learning (ML), focusing on core algorithms, their applications, and hands-on practice using Python libraries. By the end of the course, students will have a solid understanding of ML algorithms and the ability to apply them to real-world problems.

Module 1: Introduction to Machine Learning

- **Objective:** Provide an understanding of what machine learning is and how it fits into the broader scope of AI.
- Topics Covered:
 - What is Machine Learning?
 - o Types of Machine Learning: Supervised, Unsupervised, Reinforcement Learning
 - Key Concepts: Model Representation, Training vs. Testing, Overfitting & Generalization
- Learning Outcome: Students will understand the types of ML and foundational concepts.

Module 2: Supervised Learning

- Objective: Explore algorithms for supervised learning, focusing on regression and classification.
- Topics Covered:
 - o Linear Regression: Simple linear models, cost functions, gradient descent
 - Classification Algorithms:
 - Logistic Regression
 - Decision Trees
 - k-Nearest Neighbors (k-NN)
- Learning Outcome: Students will implement regression and classification models to predict outcomes based on labeled data.

Module 3: Unsupervised Learning

• **Objective:** Understand unsupervised learning techniques for clustering and dimensionality reduction.

WhatsApp/ Tel: +1-929-672-1814 Email: info@genai-training.com www.genai-training.com

- Topics Covered:
 - Clustering Algorithms:
 - K-Means Clustering
 - Hierarchical Clustering
 - o **Dimensionality Reduction:** Principal Component Analysis (PCA)
- **Learning Outcome:** Students will apply clustering techniques to uncover hidden patterns and reduce the dimensions of datasets.

Module 4: Introduction to Neural Networks & Deep Learning

- Objective: Introduce students to the basics of deep learning and artificial neural networks.
- Topics Covered:
 - Artificial Neural Networks: Structure, activation functions, backpropagation
 - Convolutional Neural Networks (CNNs): Introduction and applications in image processing
- Learning Outcome: Students will understand the structure and training of basic neural networks.

Module 5: Introduction to Reinforcement Learning

- Objective: Learn the basic principles of reinforcement learning and its applications.
- Topics Covered:
 - Markov Decision Processes
 - Rewards, policies, and value functions
 - Introduction to Q-Learning
- **Learning Outcome:** Students will grasp how machines learn from their environment to make decisions.

Module 6: Model Evaluation and Selection

- **Objective:** Teach students how to evaluate the performance of machine learning models.
- Topics Covered:
 - o Performance Metrics: Precision, Recall, F1-Score, ROC Curves
 - o Cross-Validation: k-Fold Cross-Validation for model accuracy

WhatsApp/ Tel: +1-929-672-1814 Email: info@genai-training.com www.genai-training.com

• **Learning Outcome:** Students will be able to compare and select models using evaluation metrics.

Module 7: Introduction to Advanced Topics (Optional)

- **Objective:** Provide exposure to advanced machine learning concepts.
- Topics Covered:
 - Support Vector Machines (SVMs)
 - Introduction to Natural Language Processing (NLP)
- **Learning Outcome:** Students will gain familiarity with advanced ML techniques and their use cases.

Module 8: Tools and Practical Implementation

- **Objective:** Get hands-on experience with Python libraries and real-world datasets.
- Topics Covered:
 - o **Python Libraries:** NumPy, Pandas, Scikit-learn, TensorFlow
 - Working with Datasets: Data cleaning and preprocessing, hands-on implementation using Kaggle datasets
- Learning Outcome: Students will be proficient in Python-based tools for machine learning.

Capstone Project: Build and Deploy a Machine Learning Model

- Objective: Apply all concepts learned throughout the course in a practical project.
- Project Overview:
 - o Choose a real-world dataset
 - o Preprocess the data, train a model, and evaluate it
 - Present the final model along with performance metrics
- **Learning Outcome:** By the end of the project, students will have the ability to solve a real-world problem using machine learning.

Recommended Textbooks & Resources

WhatsApp/Tel: +1-929-672-1814 Email: info@genai-training.com www.genai-training.com

Books:

- o "Introduction to Machine Learning" by Ethem Alpaydin
- o "Pattern Recognition and Machine Learning" by Christopher M. Bishop